Lysine carboxylation: unveiling a spontaneous post-translational modification.
نویسندگان
چکیده
The carboxylation of lysine residues is a post-translational modification (PTM) that plays a critical role in the catalytic mechanisms of several important enzymes. It occurs spontaneously under certain physicochemical conditions, but is difficult to detect experimentally. Its full impact is unknown. In this work, the signature microenvironment of lysine-carboxylation sites has been characterized. In addition, a computational method called Predictor of Lysine Carboxylation (PreLysCar) for the detection of lysine carboxylation in proteins with available three-dimensional structures has been developed. The likely prevalence of lysine carboxylation in the proteome was assessed through large-scale computations. The results suggest that about 1.3% of large proteins may contain a carboxylated lysine residue. This unexpected prevalence of lysine carboxylation implies an enrichment of reactions in which it may play functional roles. The results also suggest that by switching enzymes on and off under appropriate physicochemical conditions spontaneous PTMs may serve as an important and widely used efficient biological machinery for regulation.
منابع مشابه
Prediction of lysine post-translational modifications using bioinformatic tools.
Our understanding of the importance of lysine post-translational modifications in mediating protein function has led to a significant improvement in the experimental tools aimed at characterizing their existence. Nevertheless, it remains likely that at present we have only experimentally detected a small fraction of all lysine modification sites across the commonly studied proteomes. As a resul...
متن کاملGenetic encoding of the post-translational modification 2-hydroxyisobutyryl-lysine.
We report the synthesis and genetic encoding of a recently discovered post-translational modification, 2-hydroxyisobutyryl-lysine, to the genetic code of E. coli. The production of homogeneous proteins containing this amino acid will facilitate the study of modification in full-length proteins.
متن کاملSelectivity of post-translational modification in biotinylated proteins: the carboxy carrier protein of the acetyl-CoA carboxylase of Escherichia coli.
Biotin-dependent enzymes contain a biotinyl-lysine residue in a conserved sequence motif, MKM, located in a surface hairpin turn in one of the two beta-sheets that make up the domain. A sub-gene encoding the 82-residue C-terminal biotinyl domain from the biotin carboxy carrier protein of acetyl-CoA carboxylase from Escherichia coli as a fusion protein with glutathione S-transferase was created ...
متن کاملNovel lysine methyltransferases in hyperthermophilic crenarchaea
Background Methylation is a common post-translational modification. In proteins, it usually occurs at positively charged lysine or arginine residues and results in an increase to the residue’s pKa and therefore the strength of ionic interactions linked to this residue. Consequently, methylation can be seen as a means by which hydrophilicity, solubility and other protein characteristics can be c...
متن کاملPredicting post-translational lysine acetylation using support vector machines
MOTIVATION Lysine acetylation is a post-translational protein modification and a primary regulatory mechanism that controls many cell signaling processes. Lysine acetylation sites are recognized by acetyltransferases and deacetylases through sequence patterns (motifs). Recently, we used high-resolution mass spectrometry to identify 3600 lysine acetylation sites on 1750 human proteins covering m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta crystallographica. Section D, Biological crystallography
دوره 70 Pt 1 شماره
صفحات -
تاریخ انتشار 2014